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Earlier geometrical theories of gravitation with short-range forces are analyzed, 
in view of a more general approach, to compare some of the properties of such 
theories with general relativity (GR). It is found that neither the scalar-tensor 
nor the fourth-order theories of gravity share with GR the interesting property 
that the binding energy of a gravitating system may be attributed to the loss of 
energy in packing the matter under its own gravitational field. This general 
approach, in the form of a GR field equation with an effective energy-momentum 
tensor is used to construct a constant-density, spherically-symmetric star model, 
via a heuristic argument, as a perturbation of the corresponding model in GR 
to study the modifications to the limiting gravitational mass. The application of 
the present study to other problems of physical interest is briefly mentioned. 

1. I N T R O D U C T I O N  

The theore t i ca l  poss ib i l i t ies  of  mod i fy ing  the class ical  law of  gravi ty  
at  ex t r eme ly  large and  ex t r eme ly  smal l  d i s tances  have been  ra ised  in the  
past .  F o r  ins tance ,  See l iger  (1895) sugges ted  tha t  i f  the  universe  is not  finite, 
then  the N e w t o n i a n  theory  o f  grav i ta t ion  shou ld  be modi f i ed  at very large 
d is tances .  Modi f i ca t ions  o f  Eins te in ' s  t heo ry  o f  genera l  re la t ivi ty  (GR)  that  
i n c o r p o r a t e  a finite range  o f  grav i ta t ion  have also been  d i scussed  ( F r e u n d  
et al., 1969; Boulware  and  Deser ,  1972; D e h n e n  and  G ha bous s i ,  1987). 
Theor ies  which  a t t empt  to uni fy  gravi ty  wi th  the  o ther  forces o f  na ture  have 
usua l ly  l ed  to p red ic t  dev ia t ions  f rom N e w t o n ' s  inverse  square  law at g iven 
charac te r i s t i c  lengths  scales ,  in the form of  add i t i ona l  Y u k a w a  terms [see 
G i b b o n s  and  Whi t ing  (1981) for  a comprehens ive  list o f  references] .  Poten-  
t ials  o f  such modi f i ed  fo rm also occur  in several  sca la r - t ensor  theor ies  o f  
gravi ty  ( O ' H a n l o n ,  1972: A c h a r y a  and  Hogan ,  1973; P imente l  and  Obregon ,  
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1986) and in higher derivative theories (Sexl and Pedana, 1966; de Witt, 
1975; Stelle, 1978). Fischbach et aL (1986) suggested that there might be 
another fundamental force in nature which depends on the composition of 
the objects to add to the four existing forces (gravity, electromagnetism, 
and the strong and weak nuclear forces). Since then numerous experiments 
have been carried out to test whether there truly was a new force. It is now 
a general consensus, as a result of these experiments, that those original 
claims may have been mistaken, and that there is at present no firm evidence 
for a fifth force that depends on the composition of  the objects (Gribbin, 
1988). However, the research stimulated by those claims has produced 
strong evidence that there are deviations from Newton's law of gravity over 
ranges of a few hundred meters (Stacey et al., 1987; Eckhardt et al., 1988). 
These deviations affect all objects equally, and may include both a repulsive 
force and an attractive component.  Although the actual need of  additional 
short-range components of gravity will only be resolved by further experi- 
ments, if we wish to keep a geometrical description of gravitation, we have 
to consider seriously all those theories different from GR which incorporate 
in the weak-field, low-velocity limit such modifications. In spite of the fact 
that there exist many theories that satisfy this requirement, as we mention 
above, a systematic comparison of them with GR is still due. 

The purpose of the present work is to provide a contribution in this 
direction by analyzing the scalar-tensor theories of the Kaluza-Klein-Jordan 
type 3 and the fourth-order theories of gravity. We wish to stress mainly 
those differences that originate in Comparison with well-known properties 
of the Newtonian theory and are consequently inherited by GR in the 
weak-field, low-velocity limit. To this end, it will be enough to consider, in 
accordance with the geophysical measurements performed so far, the appli- 
cation of  the theories in the weak-field limit to a bounded, static, spherically- 
symmetric distribution of  matter. 

The plan of the paper is as follows: In Section 2 we review briefly the 
family of scalar-tensor theories of the Kaluza-Klein-Jordan. type and the 
fourth-order theories of gravity. In both cases we derive the weak-field static 
limit, and indicate how a solution to the field equations can be constructed 
in such a limit. In Section 3 we write the previous theories in the form of 
GR, i.e., with the Einstein tensor equal to an effective energy-momentum 
tensor constructed, in general, from the matter tensor, auxiliary fields, and 
the metric. This effective theory is used to compare a geometrical definition 
of binding energy (or mass defect) for a spherical system with the corre- 
sponding Newtonian definition, as the gravitational energy loss in forming 
the system from its constituents, initially at rest at infinity. We find that 

3See Singh and Singh (1987) for a detailed review of a general class of scalar-tensor theories. 
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neither the scalar-tensor nor the fourth-order theories of gravity share with 
GR the interesting property that this mass defect may be attributed to the 
loss in energy in packing the matter under its own gravitational field. Of 
course, in the scalar-tensor theories it may be argued that this apparent 
disagreement may reside in that in forming the system we are also creating 
a scalar field which may itself support energy. However, a simple-minded 
calculation shows that even if we take into account a possible scalar field 
energy, the two ways of  computing the binding energy produce different 
results. Our calculations are justified on the basis that in the geometrical 
theories of gravitation that we consider, the energy-momentum tensor 
satisfies locally a covariant conservation law, which in the weak-field limit 
reduces, as it is well known, to the Newtonian equation of motion for the 
fluid, consistently with the geodesic equation for a test particle. At the end 
of the section we take a perfect fluid of constant density, within a sphere 
of radius R, and integrate the equation for the pressure to study the possible 
modification introduced by a Yukawa correction to the limiting gravitational 
mass as given by GR. 

We remark that it would be most desirable to extend the present study 
to a cosmological model (d'Olivo and Ryan, 1987) and also to construct 
physically interesting exact solutions, to check for possible deviations bey- 
ond the weak-field limit with respect to the predictions of GR. We present 
a summary and conclusions in Section 4. 

2. THE SCALAR-TENSOR AND THE FOURTH-ORDER 
THEORIES  OF GRAVITATION 

In this section we describe briefly two geometrical theories of gravitation 
which lead in the slow-motion, weak-field limit to a Newtonian theory with 
additional Yukawa terms. 

2.1. A Scalar-Tensor Theory of  Gravity 

The theory that we shall briefly present belongs to the family of 
scalar-tensor theories which are obtainable from a five-dimensional 
Lagrangian which after dimensional reduction produces the coupling 
between the scalar and tensor fields (Jordan, 1945; Kaluza, 1921; Klein, 
1926; Bergmann, 1968). We begin by choosing the action in 4D spacetime 
for the scalar-tensor fields and matter as (Pimentel and Obregon, 1986) 

I J- [4)R+ = 4) -1 y ( 4 ) ) g  a b 4 ) , ~ 4 ) , b _ 2 1 - ~ ( 6 ) + 1 6 z r L M ] ~ d 4 x  (1) 

where R is the scalar curvature; 4) is the scalar field. The function 1)(4)) is 
a potential for the scalar field and y(4)) plays the role of a coupling function; 
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both 3' and s are arbitrary functions of r The matter Lagrangian density 
is given by LM. The field equations derived from (1) are 

-2 1 2 cd Gab=--8"lT"t~-lTab--~'~c~-l gab--q ~ 7 ( q ~ , a ~ b , b  - / g.bg r 1 6 2  

-r162 -go~D~r (2) 

r-qgr = _ 1 ( 3 / ' _ 1 \  cd + r  (3) 
2 \ y  r  g r162 --2I~') 

where Tab is the covariant conserved energy-momentum tensor for matter; 
i.e., it satisfies the equation 

ab T ,b =0  (4) 

as implied by the field equations (2) and (3). Thus, as in GR, a free neutral 
test particle will follow a geodesic line in the spacetime manifold. The scalar 
field r influences the motion of a test particle only through the metric gab. 

By combining (2) and (3), the equation for r can also be written in the form 

_ _  Y' cd-- --  412 2 r  
87r T 2 y ~ 3 g  @ , c @ , d - ~ - -  (5) 

DgO 2 y + 3  2 y + 3  2 y + 3  

The Brans-Dicke theory is obtained when y ( r  = const and 12 = 0. General 
relativity corresponds to the limit y ( r  --> co and l~(r --> A (the cosmological 
constant) and we consistently take r ~ r  f ,  where r = const and 4~ = 
O ( Y- 1 ). If we are interested in obtaining GR without the cosmological term, 
we shall take 12(r = 0. Let us consider now the weak-field limit (without 
a cosmological constant) defined by the following assumptions: 

T =  0(1); r r  O(1) 

f / ( r  = ~ r  0(2) 

12'(r = 1294~ + 0(2) 
(6) 

7(r  = 70+ %4;+ 0(2) 

7'(r = %+ 7~6 + 0(2) 

gab = rh, b + hab + 0(2) 

We substitute expressions (6) into (5). In the zeroth-order approximation 
we obtain 11~ = 0, i.e., 12(r = 0(2). The first-order equation is 

2,4. ~"u7 [ ~ f _  87r T -  v,o o,e (7) 
270+3 270+3 

where the box operator corresponds now to the fiat metric and we have 
used the zeroth-order equation. 
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In the particular case of slow motion (or else for a static system) the 
lowest order equation that satisfies the field ~ is 

V 2 ~  - m 2 ~ =  - 8 ~ a p  (8) 

where rn2=-2 th0f~ / (2yo+3) ;  a = l / ( 2 y 0 + 3 ) ,  and we have taken T =  
- p + O ( 2 ) ;  P = - T 4 4 ,  the mass density. The solution of (8) in R 3, which 
satisfies the boundary condition q5 ~ 0 at spatial infinity is 

q~(x) = 2a fR 3 Gy(x, x')p(x') d 3 x  ' (9) 

where 

e x p ( - m l x - x '  I) 
Gy(x ,  x') = (10) 

Ix-x'l 

is the whole-space Yukawa Green function; i.e., it satisfies the equation 

V 2 G y  - m 2 G y  = - 4 r r 8 ( x -  x') (11) 

and the boundary condition Gy = 0 at infinity. 
Let us consider now a static, spherically symmetric spacetime manifold 

J /  with metric 

g = e ~ r )  d r |  d r +  r 2 d~~ 2 -  e € d t |  d t  

d ~  2 = dO | dO + sin 2 0 d~ | d~0 

Here r is an invariant quantity defined in such way that 1 / r  2 is the intrinsic 
Gaussian curvature of the (0, ~o) 2-space (intrinsically a sphere of radius 
r). We shall assume that/3 and ~7 are bounded functions of r for 0-< r < c~ 
to be determined by the field equations. Since we are interested in the 
gravitational field of a bounded source, we shall further assume that J// is 
asymptotically flat, i.e.,/3, r/-~ 0, at spatial infinity. The nonzero components 
of the mixed Einstein tensor are (Synge, 1960) 

1 1 + rr/1 
G ll = -~ - e - t3 (12) 

r 2 

2 

G ~ = G ~ = e  -~ r/11 ~7~ ~ 
2 4 2r 2r 4 J (13) 

G4 = ~ _  e_t3 1 - r/31 (14) 
r 2 
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The subscript 1 on/3 and ~ means differentiation with respect to r; 13 and 
~7 can be solved quite easily in terms of GI and G 4. From (12), (14), and 
the boundary conditions on/3 and r/ we obtain 

;o e -~ = 1 --1 r'2G](r ') dr' (15) 
r 

Io~(e~-l-r 'er  (16) n =  \ r' 

The constant in (16) is determined by the requirement ~7~0 at spatial 
infinity. The other components of G~ can be expressed in terms of G~L and 
G44 by making use of (13) or equivalently by the identity ab G ;b=0. 

In the weak-field approximation (12)-(14) take the form 

04 - 1 2 
4 a l  - -  02 G~ = vZr/+ 0(2) (17) 

2 1 r G~ =/3 - rrh + 0(2) (18) 
2 4 r G4 =/3 + rill + 0(2) (19) 

where we have assumed O(~/) = O(1) = O(13). 
The motion of a neutral test particle in the weak-field limit will be 

governed by a Newtonian-like equation of motion with a gravitational 
potential V given by 

V= n / 2 +  0(2) (20) 

The first-order equations obtained from (2) are 

1 1 
a a ~ 1 0 a c 7  ..~ Gb=--8ZM)olT~--q)o g q);cb &o~6~VS~ (21) 

where ~ac is the flat metric in spherical coordinates. Using (17)-(21), a 
straightforward calculation shows that 

1 

vZv = -41r~bo 1T4(1 + c~) - rnZ4,oQp/2 ~ 4 ~'4~o't3 (22) 

where we have defined t~ by the last identity. Since & is given by (9), we 
can express ~ in terms of p as 

/~(x) = p(x)(1 + c~) - c~rnZ47r f Gy(x, x')p(x') d3x ' (23) 

An interesting property of this (effective) mass distribution is that its 
integral over the whole space equals the total mass M of the system; i.e., 
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To prove (24), we use definition (23) and (11). Notice that M, by (22), may 
also be considered as the total gravitational mass of  the system as measured 
by a Keplerian observer at infinity. 

Let us now find a solution to (22). To this end, define a new potential 
VN -= V +  &/2qS0 and substitute 4~ from (8) into (22) to obtain the expression 

V 2 V N = 4~bolp (25) 
Thus, the function VN is a Newtonian potential which is determined by 
the Poisson equation (25) and the boundary conditions. A solution to (22) 
may be expressed as 

V = VN + Vy (26) 

where V y -  - ~ / 2 6 o .  The gravitational potential V contains a Newtonian 
part  and a Yukawa correction whose range is determined by the constant 
fl~ and a weighting factor or. The Newtonian limit is obtained when c~ ~ 0 
(17o1~Oo) and 4~o = G -1 ( G  is the gravitational constant). The parameters 
3'o and f~g are directly related to the experimental values of  c~ and m (Stacey 
et aL, 1987; Eckhardt  et aL, 1988). 

The whole-space Green function corresponding to (22) is 

Vl(r) =-G(~+o~e; ''r) (27) 

The potential VI may be considered as the gravitational potential (in the 
weak-field limit) of  a unit mass at the origin. 

2.2. Fourth-Order Theory of Gravity 

We shall consider those models of classical gravity derived from actions 
that include both the Hilbert action and the four-derivative terms (i.e., terms 
quadratic in the curvature) (Stelle, 1978). It is well known that there are 
only two independent  additions that one can possibly make, so that we 
have only a two-parameter  family of  field equations. We write the action 
in the form 

I = f (hRobRab -- ~ + KR + LM )n/"---'-~ d4x  (28) 

We obtain G R  when h and or, considered to be dimensionless numbers,  are 
equal to zero and K = (167rG) -~. 

The field equations following from the action (28) are of  the form 

Sab + KGab = _ l  T~ (29) 

where Sab depends linearly on the parameters  A and or, it contains second 
derivatives of  the Ricci tensor and the scalar curvature, and quadratic terms 
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in the curvature. Equations (29) are related by generalized Bianchi identities 
(S ab + KGab);b =- O, which are a direct consequence of the usual uncontracted 
Bianchi identities and the commutat ion relations. The matter energy- 
momentum tensor has to satisfy then the covariant conservation of the 
source, T"b;b =0,  So the equations of  motion for a free particle are a 
consequence of the field equations, the same as in Einstein's theory. 

In order to extract some of the physical consequences of  (29), let us 
consider a static, spherically symmetric system in the weak-field approxima- 
tion. We choose the metric in Schwarzschild coordinates with the same 
form as before, and work with the field equations up to terms linear in ~7 
or/3. Again, there are only two independent equations, which we choose 
as the linear combinations 

1 1 1 1 1 ( ~  4 1 ) 1 
Sa~+KGa~=-I/2Ta a Sii+KGi i -  4+KG44 = 1/2T44 

TO simplify finding the general solution to these equations, we define the 
quantities 

2 d  
Y = r -  ~rr (r/3) 

X =V2V - Y 

where V is given by (20). We obtain (Stelle, 1978) 

4(60- - 2A )~72X - 4 K X  = p 

A -40" 2~r-A 
2A V 2 y -  2KY-2(3o._  A )P + 2K3cr_ h 

(30) 

(31) 

(32) 

X (33) 

To construct a solution, we first solve (32) to obtain X;  we then replace 
this X into (33) and solve for Y; finally, with X +  Y as a source for V we 
solve the Poisson equation (31) to obtain the gravitational potential. Follow- 

, 2 K / X .  ing Stelle (1978), we define the constants mo 2= K/(6o- 2A) and m 2 = 

A straightforward calculation shows that (32) and (33) can be written in 
the form 

~72X 2..  m~ (34) 
- m o A  = 4---~p 

2.. 2m2+rn~ +2(m2_m~) V:. 
r - m a r =  - 6---~ P (35) 

Let us consider now a bounded,  spherically symmetric system in R 3. To 
obtain the whole-space Green functions associated with (31), (34), and (35) 
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we take p(x) = 6 (x -x ' ) .  Let us denote those functions as V1, X1, I11 and 
impose the boundary condition 

( V~, XI,  Y~) -+ 0 at spatial infinity (36) 

We have to solve 
2 

V2X1 - m2X~ = ~ 2 ~ ( x -  x') 

V 2 Y l _ m 2 y l _ _ Z m 2  + 2 m ~  +32(m~- m~)X,  
6K 

V2V1 = X I +  Y1 

with the boundary condition (36). We obtain the unique solution 

m2o exp(-mo[x-  x'D 
X,(x, x') = (37) 

16rrK I x - x ' l  

m~ exp(--m2lx-x']) mo 2 exp(-molx-x ' [ )  
Yl(x, x') - - -  (38) 

12~K Ix-x'l 24~'K Ix-x'l 

1 exp(-m2lx-x ' l )  1 exp(-molx-x ' l )  
V I ( X  , X f) - -  - -  

127rK ]x-x'] 487rK [x-x'[ 

1 1 
16~-~ Ix-x'l (39) 

Since the system (31), (34), and (35) is linear in p, we have that the general 
solution which satisfies the boundary condition (36) is 

V(r)  = fR 3 V,(x, x')p(r') d3x ' (40) 

Y ( r )  = fn  ~ Y~(x, x')p(r') d3x ' (41) 

The function /31 to first order is obtained by integrating (30) with Y 
given by (38): 

1 1 1 e -m2r  1 e -m~ 
~ , ( r )  - - -  

8rrK r 127rK r 24~K r 

m 2  m o  e -m2r -- e -%r (42) 
12rrK 24~'K 

Of course /31(0)= 0, as it should be according to (30). Notice from (39) 
that V~ is the sum of the usual Newtonian potential plus two Yukawa 
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potentials with ranges given by m2 and mo in a fixed relative proportion, 
i.e., the coefficients do not depend on any free parameter and are just fixed 
by the coupling constant K = (167rG) -1 as required by the validity of the 
Newtonian limit at infinity. Moreover, at r---Ix-x'l-->0 the 1/r  term is 
canceled and (39) tends to the finite value (48~K)-l(mo-4m2). 

The peculiarities of the static field in the linear limit are better revealed 
if we consider an extended source. For this purpose we take a constant- 
density (p = Po) spherical star model of radius R. The integrals in (40) and 
(41) are immediate, and we obtain (Chiang and Hamity, 1975) 

/9o[3K kl-e-m2R(1-~-+Rtkm2r r / s i n h  m2r] 

+ /9011-- e-'%R( 1 - ~ + R ~ s i n h m o r  ] 
6K \ mor r~ ' 

Y ( r )  = 
PO e--mzr 

- -  (m2R cosh m2R - sinh m2R) 
3r m2r 

PO e-m~ 
Jr - -  ( moR cosh moR - sinh moR ) , r - R 

6K mor 

R \ 2  2R2]-m2oR----5 1 - - - ( l + m o R )  

4 G M [  e -"~R ] 
- - - ( l + m z R )  s i nhmzr  r ~ R  

1 m2r 
V(r, R) = (44) 

G M  G M  e -r%r 
- -  - -  ( Rmo cosh moR - sinh moR ) 

r m~R 3 r 

4 G M  e -m2r 
- -  (Rrn 2 cosh m2R - s i n h  rn2R), r >- R 

7 m3R3 r 

where we have made explicit the dependence of V on the size of the source; 
the integration constants are fixed by the condition that V is continuous at 
r = R ;  M 4 3 --.~IrR Po- Notice that if we take the limit R -~ 0, Po ~ ~ ,  in (44), 
while keeping M constant, we obtain that the potential of a point particle 
equals MV1,  as expected. The potential outside the sphere of constant 
density deviates from the Newtonian form by Yukawa potentials with 
weighting factors depending on the size of the source and the range para- 
meters mo and m2. 

Another interesting property, which is true in general and can be verified 
in our particular example using (43), is that Y ( r ) ~  8~Gp(r )  in the limit 
of GR, (too, m2)~oo. 

r ~ R  

(43) 
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3. THE EFFECTIVE ENERGY-MOMENTUM MO D EL 

From the form of the field equations (2) and (29) it is suggestive to 
consider those geometrical theories of gravitation with field equations 

G.b = - 8  7rGT,~b (45) 

where the effective energy-momentum tensor Tab may contain explicitly the 
matter energy-momentum tensor, auxiliary fields, free parameters, and the 
metric components and their derivatives through geometrical tensors con- 
structed from them. The tensor T must satisfy the integrability conditions 

Tab, b = 0 (46) 

as implied by the Bianchi identities. 
The matter energy-momentum tensor will also be assumed to satisfy 

the covariant conservation laws of the source 

Tab;b = 0 (47) 

which may be a consequence of the field equations and generalized Bianchi 
identities. So the equations of motion for a free particle will follow from 
(47) in the same way as in Einstein's theory. We shall also require that a 
well-defined limiting procedure exists such that (45) reduces to Einstein's 
equation in that limit. 

We are particularly interested in theories which have as a slow-motion, 
weak-field limit a Newtonian potential with Yukawa corrections. More 
specifically, the gravitational potential should satisfy in the static linear 
limit the equation 

V 2 V = 4 ~-Gt3 (48) 

with 

V = VN + Z  Vj (49) 
J 

where the Newtonian potential VN satisfies the Poisson equation 

V 2 VN = 47rGp (50) 

and Vj are Yukawa potentials defined as solutions of the equations 

V 2 Vj - rn) Vj = - 4  zrGo~i p (x) (51) 

Thus, the effective mass density fi for the case of  a bounded distribution 
of matter and fields which go to zero at infinity is given by 

fi(x) = 3nf3 Fl(x, x')p(x')  d3x  ' (52) 
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where 

Fl(x, x')-= ( 1 - ~ .  a j ) 6 ( x - x ' )  + !4~r~ajmj2exp(-mjlx-  x'D ~ (53) 

(aj, rn~) are constants. In the scalar-tensor theories of  Section 2.1 we have 
only one set of parameters al  = - a  and ml = m as defined in (8). For the 
fourth-order theory we have (al  = - 1 / 3 ,  ml = too) and (a2 = 4/3, m2 = m2); 
clearly, a~ + a2 = 1; thus, the first term on the right-hand side of (53) is zero. 

To make a comparison with GR of some properties of those theories 
for which a field equation of  the form (45) is applicable, let us go back to 
a static, spherically symmetric spacetime manifold J//. The solution to the 
field equations, according to (15) and (16), can be formally expressed in 
the form 

L e -~(r) = 1 + 8~rG /2 ~.4(r, ) dr' (54) 
r 

fo ~(r)  = - /3( r )  + 8~'G r 'e~( l" l -  7"44) dr '+  const (55) 

In GR, given T1 = r l  and T44 = T 4 as functions of  r, we determine the 
components of  the metric through (54) and (55). The remaining components 
of  r are given by (45) with G b obtained from (12)-(14). 

In the weak-field limit we shall obtain (20) and 

~4 _ ( TI + T~ + "i~33) = -/~ + 0 (2 )  (56) 

Notice that we include terms like T11 as being of the same order as ~ 4 _  O(~),  
in contrast to the weak-field limit in GR, where the stress components of 
T are of higher order. Actually, it is precisely an equation equivalent to 
(56) which was used before to obtain the functional form of  ~ in both the 
scalar-tensor and higher-order theories. 

For a static, spherically symmetric configuration, the total mean energy 
(rest mass+kinet ic  energy+compression energy+etc.)  Mo of the system 
can be expressed in the form (Misner et aL, 1971) 

M o = -  f T~bubdO-~= IR3pet~/2 d3x (57) 

Here Y. is a t = const hypersurface. The product e r d3x represents an 
invariant volume element, and p ob u a = Tuo Ub, = e - ' / 2 ~ ,  is the energy density 
as measured by an observer with four-velocity u ~. 

The total gravitational mass of the system seen at spatial infinity is 
defined by 

' L M = 4 - - ~  lim grad V. &r (58) 
r ~ c O  2 
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where S~ is a sphere of radius r with the surface-vector element do-. To 
write (58), we have used the boundary condition 77 ~ 2 V -  O(1/r).  Equation 
(58) can be transformed into a volume integral over the source by using 
(48) and definition (52). Thus, we obtain 

M = ISource p(r) d3x (59) 

Equation (59) is precisely the same as in GR (or Newtonian theory) and 
can be proved in the same way as in the particular case of (24). The difference 
E6 ~ M - Mo, 

EG = fsou~ O(1 - e ~/2) d3x (60) 

may be interpreted as the binding gravitational energy of the system. 
In the nonrelativistic limit a binding gravitational energy is usually 

associated with the loss in energy in packing the matter under its own 
gravitational field, i.e., it is the work done by nongravitational forces against 
the gravitational field, in bringing the matter at rest at infinity to its final 
configuration. This packing energy is also the gravitational potential energy 

of the system given by 

~.~ = - -  G f  Vl(lX_xq ) dmdm' 
2 J 

= f V(r)o(r) d3x (61) 
,) S ource 

The last formula in (61) has been particularized to spherical symmetry; 
V(r) is the gravitational potential on the surface of a sphere of radius r: 

= G IR 3 Vl([x-x'[)p(r')O(r- r') d3x ' (62) ~'(r) 

Here r =  [x], r '=  Ix'l, and O(r-r')  is the Heaviside step function. The 
potential Vl(lx-x']) is the solution of (48) for p = 6(Ix-x ' l )  and boundary 
condition 1/1-->0 as Ix-x'[->oo. Outside the source we have I~(r)= V(r). 
Now, a natural question arises: Does Ec approach the value f~ in the 
weak-field limit? To answer this question, we take the weak-field limit 
of (60), 

l i I  s 1 EG ~ EG = - ' ~  p f l  d 3 x  (63) 
ource 
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The 1 on top of a given character indicates that we take that variable up 
to the first order [p--O(1)] .  Comparing (61) and (63), we infer that a 
necessary and sufficient condition to have 

1 

= Ec 

for any spherically symmetric distribution of energy p is that 

1 

2 ~'(r) -- - f i (r)  (64) 

In GR we have T~ = T~; thus, (54) gives 

1 
fl(r) = - 2 G  m(r) 

r 

where m(r) is the total mass enclosed by a sphere of radius r. On the other 
hand, we know that in Newtonian theory the potential l ) ( r ) = - G m ( r ) / r .  
Therefore, we may conclude that in GR (64) is satisfied. 

Let us consider now the scalar-tensor theories of Section 2. From (54) 
we can write the condition (64) in the equivalent form 

V(r) = ~,4 d3x , (65) 

Using (8), (9), (21), and (45), a straightforward calculation shows that 

14 amZ fR exp( -mlx -x ' ] )  d3x' 
T4 = - p  + ap ---4-~-~ 3 Ix -x ']  p(x') (66) 

Let us consider again, for simplicity, the particular case p (x )=  
poO(R-  r), Po = const. From (66) we obtain 

l C ~r e-mR 1 - O + a P - a o ~  mr ( l + m R )  s inhmr] ,  r < R  (67) 
~4 T 4 = 

e 
- p +  ap a p o - - ( m R  cosh m R - s i n h  mR),  r >  R (68) 

mr 

It is apparent from (67) that for r < R the integral on the right-hand side 
in (65) depends on R, while l~(r) does not, according to definition (62). 
Thus, we can conclude that condition (64) will not be satisfied, in general, 
for any of the scalar-tensor theories of Section 2. A straightforward calcula- 
tion will also show, in this particular case, that condition (64) is not satisfied 
for r > R either. A similar reasoning applies to the fourth-order theories. 

Although we have not investigated all the geometrical theories which 
in the slow-motion weak-field limit lead to the gravitational potential (48), 
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along with (49)-(53), to determine whether condition (64) is fulfilled or 
not, we may assume that such a theory exists and study some of its properties. 
To this end, we shall construct a static spherically symmetric star model in 
the first order of approximation. 4 The validity of condition (64) allows us 
to dispose of one of  the arbitrary functions which are required to define 
a unique solution to the field equations according to (54) and (55). In 
what follows we obtain that solution explicitly in terms of  one arbitrary 
function p(r) .  

1 

Given p(r) ,  we obtain V(r) from (62) and 7"44 from (65), i.e., 

1 
f 4 _  1 d 

47rGr 2 dr [ rV(r)]  (69) 

From (56), (48), (45), (69), and the Bianchi identities, we 
following differential equation in first order: 

3 T I - T  + r  T I - ~  = 1 Vz (V_IT.) (70) 
47rG 

The solution of  this equation is 

1 1 
~ _  ~4 1 dq4 C ( 7 1 )  

4-- 4~rGr dr r 3 

where q =- V(r)  - V(r)  and C is an integration constant which must be taken 
equal to zero to guarantee that the spacetime is locally Lorentz. In GR we 
have V ( r ) =  - G m ( r ) / r ,  ( d V / d r )  = m ( r ) / r  2, m(r)=4~-So T4r '2 dr'; there- 
fore, from (69) and (71) we obtain 

1 1 

T 4 -  T 4 ; 4 -  T1 = 0 (72) 

as expected, since T1 = r l  = 0 (2 ) .  
1 1 

Outside the source ( r >  R) we have V=  I ~, T1 = T44. Therefore, from 
(55) we obtain, in first order, 

1 1 

r/(r) = -13(r) + const, r >  R 

which is a relationship between the metric coefficients similar to the one 
obtained in GR. 

Let us consider now a perfect fluid 

Tab = puaub q_p(g ab q_ U~U b) (73) 

obtain the 

4Actually, condition (64) is just a relationship only valid in first order. 
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From (47) we obtain 

dp.+ p + p d~? 
0, r <- R (74) 

dr 2 dr 

This last equation can be easily integrated for the case p = poO(R - r). The 
solution which satisfies the condition p ( R )  = 0 is 

p(r)=po{exp�89 r<-R (75) 

The pressure at the star center is given by 

Po = po{exp �89 ~/(R, Po) - 7/(0, P0)] - 1} (76) 

where we have written the function ~7 with an explicit Po dependency. We 
know that in GR, given a value of R, there exists a limiting value p0 = pc 
for which the central pressure becomes infinity. This value of po imposes a 
limit to the total gravitational mass given by ( 2 G M / R c  2) < 8/9. To study 
the possible modifications to this result in a theory with field equations 
(45), we may go a step further in our heuristic approach and add to (71) 
the G R  value of T~I. More precisely, our aim is to write (74) up to an order 
of  approximat ion in which the relativistic effects may show up. From (54) 
and (55) we have 

--d~r = Ze L-~r + 4~urt . 1 -  (77) J 
where 

Q = 4 7 r G  fr  ,1%4 ,2 
....... 1 4 r  dr' 

r Jo 

1 

I)(r) = I~(r). In agreement with (71) and the G R  limit, we It is clear that 
make now the following assumption: 

1 fl=f   1 d 
4~Gr dr ( V -  V) + T] + O(aj ; 2) (78) 

1 1 

f 4  ~4..~ O(o/j ; 2); -4 4 = T4 = T 4 (79) 

Here O(aj ; 2) indicates terms which are of  second order or higher, and are 
equal to zero when the parameters  aj vanish. From (77)-(79), we obtain 

dr 2e~ +4~rGrp+ O(aj;  2) (80) 
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Thus, in the lowest relevant order, (74) becomes 

ap p+p { a v  .~ 
-~r = - ~ - ~  ~ -~r -r,41rurp ] + h.o. (81) 

Equation (81) contains the exact G R  limit (aj ~ 0). From this point of  view 
it may be considered as the first-order perturbation of the G R  equation in 
the small parameters  aj. 

As an example of  the modifications with respect to G R  introduced by 
our heuristic approach,  we may compute the pressure p from (81) in the 
particular case p = p o O ( R -  r). To this end, we neglect the h.o. terms and 
assume only one Yukawa potential characterized by (m, a )  in (49). The ex- 
pressions for V and V can be easily obtained from (44) [take mo= 0, m2 = m, 
and replace the factor 4 by ~; recall that 17"(r)~ V(r; r)]. Equation (81) is 
then numerically integrated starting from the boundary  condition p ( R )  = O. 
We introduce dimensionless quantities by using geometrical units (c = G = 1) 
and defining new variables: x =  mr, X = mR, P = P / P o ,  P'o=Po/m 2. We 
choose rn -1 = 0.2 km, R = 10 km, a = 10 -3 ,  P'c = Pc~ m2=- (3 ~rXZ) -1. In Figure 
1 we show a qualitative comparison of the pressure in G R  (a  = 0) with 
the corresponding result for a = 10 -3 .  We notice that P is finite at r = 0. It 
can be seen that the pressure remains bounded if po -< 1.0045pc, which 

P 

200 

100 

0 

\ 
i o(-- O (GR) 

o<= 10 -3 

0 R 
Fig. 1. A comparison of the radial pressure in a constant  (critical) density model in GR 
(a  =0)  and the corresponding values with a repulsive Yukawa correction (a  = 10-3). The 
pressure and radial distance are in relative units. 
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corresponds, in the present approximation,  to a relative increase in the 
limiting gravitational mass of  the same order as the constant a. 

4. SUMMARY AND C O N C L U S I O N S  

We conclude by summarizing the main features of  the preceding 
approach,  and by pointing out some interesting questions that remain to 
be discussed. 

We have reviewed briefly two families of  geometrical theories of  gravita- 
tion which lead, in the weak-field, slow-velocity limit, to modifications of  
the Newtonian interaction incorporating short-range forces. This study 
suggested a possible general form to discuss any other theory with a 
nonrelativistic limit with such characteristics. Thus, we proposed field 
equations in the form of  G R  with an effective energy-momentum tensor 
constructed, in general, f rom the matter tensor, auxiliary fields, and the 
metric. This effective energy-momentum tensor must satisfy a covariant 
conservation law, as integrability conditions implied by the Bianchi iden- 
tities. We have also assumed that the interaction between matter and 
geometry is in the usual form of a covariant conservation law for the matter 
energy-momentum tensor. This assumption implies that a neutral free par- 
ticle will follow a geodesic line, just in the same way as in Einstein's theory. 
We used this result as a basis for a comparison of a geometrical definition 
of  binding energy for a spherically symmetric static system in the weak-field 
limit with the corresponding Newtonian definition. We found that neither 
the scalar-tensor nor the fourth-order theories of  gravity share with G R  the 
interesting property that this mass defect may be attributed to the loss in 
energy in packing the matter under its own gravitational field. 

Although we have not checked all possible theories which lead in the 
weak-field static limit to a Newtonian potential with Yukawa corrections 
to see whether the above condition is satisfied or not, we have assumed 
that such a theory exists, to construct, via a heuristic approach,  a static, 
spherically symmetric star model in the lowest relevant order of  approxima-  
tion in an expansion in terms of the coupling constant of  the Yukawa 
interaction. We found that the increase in the total gravitational mass that 
can be packed in the form of  a sphere of  constant density is of  the same 
order as the coupling constant. 

We remark that it would be most desirable to construct physically 
interesting exact solutions to the geometrical theories, to check for deviations 
beyond the weak-field limit with respect to predictions of  GR. Finally, we 
believe that our study may be used to elucidate the dynamical equivalence 
between Einstein's theory and a class of  nonlinear theories of  gravitation 
(see, e.g., Ferraris et  al., 1988). 
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